

Comparisons of BIB at different energies

Massimo Casarsa

INFN-Trieste

Introduction and caveats

- This is the first attempt of a systematic comparison of the beam-induced background at different energies (which means at different colliders!).
- The main features of the BIB particles reaching the detector will be shown for three colliders operating at:
 - $ightharpoonup \sqrt{s} = 125$ GeV, $\sqrt{s} = 1.5$ TeV, and $\sqrt{s} = 3$ TeV.
- \bullet Results are obtained for a single μ^- beam arriving from the right.
- Some caveats:
 - the BIB samples used are not uniform: some were generated with MARS15, some with FLUKA. However, a comparison MARS15 vs FLUKA shows compatible results at 1.5 TeV (see the back-up slides);
 - results at 3 TeV are very preliminary: there is still no optimized machine-detector interface and the simulation is using an ideal beam.

BIB in a nutshell

 The particles generated in the interactions of the beam-muons decay products with the machine elements represent the dominant contribution to the machine background in the detector.

Available BIB samples

- Particles originating from muon decays, even faraway from the interaction point, may eventually reach the detector: BIB generation requires a detailed modeling of the machine and the machine-detector interface (MDI).
- MARS15 samples (N. Mokhov, FNAL):
 - 62.5-GeV μ[±] beams: simulated using MAP's Higgs factory design with a dedicated optimized MDI;
 - 750-GeV μ[±] beams: simulated using MAP's 1.5-TeV machine design with a dedicated optimized MDI.
- FLUKA samples (C. Curatolo and P. Sala, INFN-Milan):
 - 750-GeV μ⁻ beam: simulated using MAP's 1.5-TeV machine design with MAP's optimized MDI;
 - ► 1500-GeV μ^- beam: simulated using MAP's 3-TeV machine design and temporarily with MAP's MDI optimized for $\sqrt{s} = 1.5$ TeV.
- Particle production thresholds for all BIB samples: 100 keV for photons, electrons, muons, charge hadrons and 0.001 eV for neutrons.

Machine parameters

Y. Alexahin et al., 2018 JINST 13 P11002

beam energy [GeV]	63	750	1500
average inst. lum. [cm² s-¹]	0.008 x 10 ³⁴	1.25 x 10 ³⁴	4.6 x 10 ³⁴
number of muons/bunch	4 x 10 ¹²	2 x 10 ¹²	2 x 10 ¹²
number of bunches	1	1	1
repetition rate [Hz]	15	15	12
β* [cm]	1.7	1	0.5
normalized $\epsilon_{\scriptscriptstyle T}$ [π mm rad]	0.2	0.025	0.025
normalized $\epsilon_{\scriptscriptstyle L}$ [π mm rad]	1.5	70	70
bunch length [cm]	6.3	1	0.5
bunch size at IP [µm]	75	6	3
momentum spread [%]	0.004	0.1	0.1

Interaction region structure

1.5-TeV machine

3-TeV machine

Machine-Detector Interface

 A crucial element of the machine-detector interface is represented by two tungsten shielding cones (nozzles), cladded with a 5-cm layer of borated polyethylene (BCH2).

IP optimized for a 1.5-TeV μ collider

Detector envelop

 Both MARS15 and FLUKA simulate the interaction of the muon decay products with the machine elements and transport the BIB particles up to the detector envelop.

Interlude: effect of nozzles on BIB

F. Collamati et al., arXiv:2105.09116

Muon decay point

 $2x10^{12} \mu/beam$

Entry point into the detector

E_{kin} spectra: photons, electrons

 $2x10^{12} \mu/beam$

E_{kin} spectra: neutrons, ch. hadrons

 $2x10^{12} \mu/beam$

E_{kin} spectra: secondary muons

Time of arrival at the detector

Time of arrival at the detector (zoom)

BIB yields

	MARS15	MARS15	FLUKA	FLUKA	
beam energy [GeV]	62.5	750	750	1500 MDI N	
μ decay length [m]	3.9 x 10 ⁵	46.7 x 10 ⁵	46.7 x 10 ⁵	93.5 x 10 ⁵	
μ decays/m per beam (for 2x10 ¹² μ/bunch)	51.3 x 10 ⁵	4.3 x 10⁵	4.3 x 10⁵	2.1 x 10 ⁵	
simulation z range [m]	[-10, 30]	[-1, 25]	[0, 100]	[0, 100]	
photons/BX $(E_y > 0.1 \text{ MeV})$	170 x 10 ⁶	86 x 10 ⁶	51 x 10 ⁶	70 x 10 ⁶	
neutrons/BX (E _n > 1 meV)	65 x 10 ⁶	76 x 10 ⁶	110 x 10 ⁶	91 x 10 ⁶	
e^{\pm} /BX (E _e > 0.1 MeV)	1.3 x 10 ⁶	0.75 x 10 ⁶	0.86 x 10 ⁶	1.1 x 10 ⁶	
charged hadrons/BX (E _h > 0.1 MeV)	0.011 x 10 ⁶	0.032 x 10 ⁶	0.017 x 10 ⁶	0.020 x 10 ⁶	
muons/BX (E _h > 0.1 MeV)	0.0012 x 10 ⁶	0.0015 x 10 ⁶	0.0031 x 10 ⁶	0.0033 x 10 ⁶	

BIB mitigation in the detector

BIB mitigation strategies have to be adopted also on the detector side.
For example in the tracker, with a wise and clever detector design:

exploiting a double layer structure

exploiting the time information

Conclusion

- It's not trivial to predict a priory the amount and behavior of the BIB at different energies. It has to be studied with a detailed simulation of the machine and the machine-detector interface.
- MAP's studies prove that with a dedicated design and optimization of the MDI the BIB may be kept at the ~same level at 125 GeV and 1.5 TeV.
- The case of the 3-TeV machine has yet to be thoroughly studied.

Backup

FLUKA vs MARS15 @ 1.5 TeV

0.5

1.5

1.0

Ekin (GeV)

t (nsec)

t (nsec)